U.S. Geological Survey

Cover image from WRIR00-4196 (click for enlargement, 71 KB) Estimates of Nitrogen Loads Entering Long Island Sound from Ground Water and Streams on Long Island, New York, 1985-96

by Michael P. Scorca and Jack Monti, Jr.

U.S. GEOLOGICAL SURVEY
Water-Resources Investigations Report 00-4196


ABSTRACT

Fresh ground water that discharges from the northern part of Long Island's aquifer system to Long Island Sound contains elevated concentrations of nitrogen from agricultural fertilizer, domestic waste and fertilizer, and precipitation. The nitrogen contributes to algal blooms, which consume oxygen as the algae die and decompose. The resulting low dissolved oxygen concentrations (hypoxia) adversely affect plant and animal populations in Long Island Sound.  

The four major streams on the north shore of Long Island that have long-term discharge and water-quality records were selected for analysis of geographic, long-term, and seasonal trends in nitrogen concentration. Nitrogen concentrations generally decrease eastward among three Nassau County streams, then increase again at the easternmost stream, Nissequogue River in Suffolk County. A long-term (1970-96) increase in total nitrogen concentrations in the Nissequogue River also is evident. Seasonal fluctuations in nitrogen concentrations in all four streams reflect chemical reactions and microbial activity in the stream system, so total nitrogen concentrations in the three easternmost streams generally were lowest during summer and highest in winter, whereas those in the westernmost stream (Glen Cove Creek) were highest during summer and lowest in winter.  

The nitrogen loads discharged to Long Island Sound from each of the four streams for each year during 1985-96 were calculated from the annual mean total nitrogen concentration and the annual mean discharge. Nissequogue River's annual mean discharges were 3 to 6 times larger than those of Glen Cove and Mill Neck Creeks, and produced the largest annual loads of nitrogen--65 to 149 ton/yr (59,000 to 135,000 kg/yr). Cold Spring Brook had the lowest annual mean discharges and annual mean total nitrogen concentrations of the four streams; its annual mean nitrogen load ranged from 1.2 to 2.8 ton/yr (1,100 to 2,500 kg/yr).  

The nitrogen load carried to Long Island Sound by shallow ground water from the north shore of Long Island was calculated from simulated shallow-aquifer discharges from Nassau and Suffolk Counties (9,200 and 21,400 Mgal/yr or 34,800,000 and 81,100,000 m3/yr, respectively) and median total nitrogen concentrations at selected wells (2.2 and 4.3 milligrams per liter as N, respectively). The resultant nitrogen load was 84 ton/yr (76,500 kg/yr) for Nassau County and 384 ton/yr (349,000 kg/yr) for Suffolk County.  

The nitrogen load carried to Long Island Sound by deep ground water from the north shore was calculated from simulated deep-aquifer discharges from Nassau and Suffolk counties (13,200 and 47,300 Mgal/yr or 50,000,000 and 179,000,000 m3/yr, respectively). The median nitrogen concentrations of deep ground water for the two counties were 1.62 and 1.34 mg/L as N, respectively. The resultant nitrogen load from deep-aquifer discharge was 89 ton/yr (81,000 kg/yr) for Nassau County and 265 ton/yr (240,000 kg/yr) for Suffolk County.  

Nitrogen loads entering Long Island Sound from the shallow aquifer underlying three areas of differing land use along the north shore--a sewered residential area in Nassau County, an unsewered residential area in Suffolk County, and an agricultural area in Suffolk County--were evaluated. The agricultural area contains no major streams and, therefore, produces very little surface runoff to Long Island Sound and substantially greater shallow-aquifer discharge than in the sewered and unsewered areas. Ground water in the agricultural area also had the highest median nitrogen concentration (9.9 mg/L as N) of the three land-use areas and discharged the largest estimated nitrogen load to Long Island Sound--152 ton/yr (138,000 kg/yr), which represents about 40 percent of the estimated total nitrogen load from Suffolk County. Ground water in the sewered area had the lowest nitrogen concentration (1.9 mg/L as N) and discharged the smallest nitrogen load to Long Island Sound--7.28 ton/yr (6,600 kg/yr). The analysis indicates that land use on the north shore of Long Island can greatly affect the nitrogen concentration of water in the shallow aquifer and the resultant nitrogen load discharged to Long Island Sound from ground water.  


Citation: Scorca, Michael P., and Monti, Jack Jr., 2001, Estimates of Nitrogen Loads Entering Long Island Sound from Ground Water and Streams on Long Island, New York, 1985-96: U.S. Geological Survey Water-Resources Investigations Report 00-4196, 29 p.

Download full PDF report   [Full Report, Acrobat PDF (1.5M)]

Adobe Acrobat's .pdf (portable document file) format can be viewed using the free Adobe Acrobat Reader available for DOS, Windows, Macintosh, and UNIX.

Users with visual disabilities can visit this site for conversion tools and information to help make PDF files accessible.


For more information, contact

U.S. Geological Survey
425 Jordan Rd
Troy, New York 12180
(518) 285-5602
E-mail









To order copies of printed reports, contact

U.S. Geological Survey
Information Services
Box 25286, Federal Center
Denver, CO 80225
1-888-ASK-USGS
E-mail

Return to the New York District Home Page



USGS Water Biology Geology Mapping On-Line Water Resources Investigations Reports On-Line Water-Resources Reports

U.S. Department of the Interior, U.S. Geological Survey
Maintainer: New York District Publications
URL: http://ny.water.usgs.gov/pubs/wri/wri004196/index.html
Last update: 09:38:25 Tuesday 15 January 2013
Privacy Statement || Disclaimer
FirstGov, 'Your First Click to the U. S. Government'