U.S. Geological Survey

Cover image from WRIR00-4276 (click for enlargement, 71 KB) Use of Advanced Borehole Geophysical Techniques to Delineate Fractured-Rock Ground-Water Flow and Fractures Along Water-Tunnel Facilities in Northern Queens County, New York

by Frederick Stumm, Anthony Chu, Andrew D. Lange, Frederick L. Paillet, John H. Williams, and John W. Lane, Jr.

U.S. GEOLOGICAL SURVEY
Water-Resources Investigations Report 00-4276


ABSTRACT

Advanced borehole geophysical methods were used to assess the geohydrology of crystalline bedrock along the course of a new water tunnel for New York City. The logging methods include natural gamma, spontaneous potential, single-point resistance, mechanical and acoustic caliper, focused electromagnetic induction, electromagnetic resistivity, magnetic susceptibility, borehole-fluid temperature and conductance, differential temperature, heat-pulse flowmeter, acoustic televiewer, borehole deviation, optical televiewer, and borehole radar. Integrated interpretation of the geophysical logs from an 825-foot borehole (1) provided information on the extent, orientation, and structure (foliation and fractures) within the entire borehole, including intensely fractured intervals from which core recovery may be poor; (2) delineated transmissive fracture zones intersected by the borehole and provided estimates of their transmissivity and hydraulic head; and (3) enabled mapping of the location and orientation of structures at distances as much as 100 ft from the borehole. 

Analyses of the borehole-wall image and the geophysical logs from the borehole on Crescent Street, in northern Queens County, are presented here to illustrate the application of the methods. The borehole penetrates gneiss and other crystalline bedrock that has predominantly southeastward dipping foliation and nearly horizontal and southeastward-dipping fractures. The heat-pulse flowmeter logs obtained under pumping and nonpumping conditions, together with the other geophysical logs, indicate five transmissive fracture zones. More than 90 percent of the open-hole transmissivity is associated with a fracture zone 272 feet BLS (below land surface). A transmissive zone at 787 feet BLS that consists of nearly parallel fractures lies within the projected tunnel path; here the hydraulic head is 12 to 15 feet lower than that of transmissive zones above the 315-foot depth. The 60-megahertz directional borehole radar logs indicate the location and orientation of two closely spaced radar reflectors that would intersect the projection of the borehole below its drilled depth. 

Subsequent excavation of the tunnel past the borehole allowed comparison of the log analysis with conditions observed in the tunnel. The tunnel was found to intersect gneiss with southeastward dipping foliation; many nearly horizontal fractures; and a southeastward dipping fracture zone whose location, character, and orientation was consistent with that of the mapped radar reflectors. The fracture zone produced inflow to the tunnel at a rate of 50 to 100 gallons per minute. All conditions indicated by the logging methods were consistent with those observed within the tunnel. 


Citation: Stumm, Frederick, Chu, Anthony, Lange, Andrew D., Paillet, Frederick L., Williams, John H., and Lane, John W., Jr., 2001, Use of Advanced Borehole Geophysical Techniques to Delineate Fractured-Rock Ground-Water Flow and Fractures Along Water-Tunnel Facilities in Northern Queens County, New York: U.S. Geological Survey Water-Resources Investigations Report 00-4276, 12 p.

Download full PDF report   [Full Report, Acrobat PDF (781K)]

Adobe Acrobat's .pdf (portable document file) format can be viewed using the free Adobe Acrobat Reader available for DOS, Windows, Macintosh, and UNIX.

Users with visual disabilities can visit this site for conversion tools and information to help make PDF files accessible.


For more information, contact

U.S. Geological Survey
425 Jordan Rd
Troy, New York 12180
(518) 285-5602
E-mail









To order copies of printed reports, contact

U.S. Geological Survey
Information Services
Box 25286, Federal Center
Denver, CO 80225
1-888-ASK-USGS
E-mail

Return to the New York District Home Page



USGS Water Biology Geology Mapping On-Line Water Resources Investigations Reports On-Line Water-Resources Reports

U.S. Department of the Interior, U.S. Geological Survey
Maintainer: New York District Publications
URL: http://ny.water.usgs.gov/pubs/wri/wri004276/index.html
Last update: 09:38:32 Tuesday 15 January 2013
Privacy Statement || Disclaimer
FirstGov, 'Your First Click to the U. S. Government'